
All, AD-A213 955

WORKING MATERIAL
FOR THE LECTURES OF

Wilfried Brauer

FORMAL APPROACHES TO CONCURRENCY

DTICS ELEC T ED

INTSr'=R DATI AL SUMMER SCHOOL

ON

LOGIC, ALGEBRA AND COMPUTATION
MAR O -ERDORF. GERMANY. JULY 2S - Aucusr 6.1989

ii,.

THIS SUMMER SCHOOL IS ORGANIZED UNDER THE AUSPICES OF rH TECHNISCHE
UNIVERSITAT MUNCHEN AND IS SPONSORED BY THE NATO SCIENCE COMMITEE1

AS PART OF THE 1989 ADVANCED STUDY INSTITUTES PROGRAMME, PARTIAL

SUPPORT FOR THE CONFERENCE WAS PROVIDED BY THE EUROPEAN RESEARCH
OFFICE A- THE NATIONAL SCIENCE FOUiNDATION AND BY VAmOUS ItDUSTRIAL

COMPANIES. 89 10
89 0 27 017

Formal Approaches to Concurrency

Wilfried Brauer

Institut ffir Informatik
Technische Universitit Mfinchen

Arcisstr. 21, D-8000 Mfinchen 2, FRG

0 Introduction I

Formal (algebraic, combinatorial, logic t eatment of concurrent processes
and of distributed systems has start ai/ thor recently only, although concur-
rent and distributed activities dedicted to common tasks are daily practice
and have always played an impor ant role or human societies. The tradi-
tional notions of computability all based n the concept of a single person
fulfilling a task step by step. his is very xplicit in Turing's work - and
even if the formalism would ow for consid ration of concurrency, as in the
case of recursive functions d fined by sets o equations, this possibility was
not discussed for a long tifn

Nevertheless there are nnections of the urrent theories of concurrency
to the different appr to formalize th4 notion of effective computa-
tion: Turing machines, -calculus and recur*ve functions. The two main
approaches to concurrency that will be descried in the following, namely
Petri nets and abstract programming language , are closely related to them.
A Petri net can be understood as a forma izatioh of the joint work of a group
of peopie(see e.g. (Bra84J and [Bra7), the abs~act programming languages

enc, by the *e dthe -calculusj' agnstheir purpose is to prescribe what should be donely -cooperatng agents. /

The rather recent intensification and broadening of work on concurrency
is certainly due to hardware developments - but the development of theo-
retical informatics is also based on its own inherent impetus, in particular

1s•

on historical influences and on abstract (not hardware-oriented) ideas and
concepts (which often can be developed by looking at what human beings
do).

The two approaches we will deal with are quite different, from the formal
and technical point of view as well as from the philosophical one. However, I
will not concentrate on their distinctions, but treat them together from the
perspective of specification and programming. Since in the case of distributed
systems there is no clear distinction between specification and programming
notations I shall use often the more general term "specification" to mean also
programming.

The following five parts (corresponding to five lectures) are mainly based
on work done in my research group, in particular by Astrid Kiehn, Dirk
Taubner and Walter Vogler.

1 Abstract Programming Languages

1.1 A General Abstract Programming Language

Let us imagine that we should specify a distributed system composed of
several agents which work rather independently but which communicate with
each other (in a well organized way). To make the problem easier, we abstract
from the processing of data and take as a basis simply a countably infinite
alphabet

AMph

of (names of) actions (assuming also that the occurrence of an action in the
specification of a system means that, in the realization of the system there
will be an agent performing this action).

Naturally one would like to be able to describe simple systems like finite
non-deterministic automata - however, we do not want to describe their
structure, but their behaviour, i.e. what they should do. Therefore we use
a notation similar to that of regular expressions; the main difference is that
we will express the iteration (Kleene star) by recursion.

In addition we obviously need an operator for some sort of parallel com-
position which should include the possibility to prescribe communications
or joint actions of the composed systems. There are several operators in the
literature based on different ways of cooperation: the two subsystems may

2

- operate completely independently

- perform some actions jointly

- communicate by performing complementary actions a and a (establish-
ing a communication link) - the joint action (a, a) having no effect to
the outside world (the communictation is internal).

We will use an operator which encompasses all these variants.
Obviously we now need a complementary alphabet Ap-h := I aI a E A}

and a notation (T) for an action without any (visible) effect. Naturally we
assume that a = a.

When wc specify a system we take the point of view of an observer (or a
user) who watches (or interacts with) the system and sees the effects of its
actions, i.e. of actions from

Vis := Alph U Alph.

According to good programming practise we would also like to be able
to express hiding (abstraction) and renaming of actions. Both can be com-
bined in the operation of applying an action manipulation function f to
a specification (It is convenient to write this operator in postfix notation.).
So af = r denotes that a is hided. We can use this operator also to disallow
(restrict) actions, if we extend its range by -L, the symbol for non-action,
undefinedness etc. (i.e. af = ± means action a is not allowed).

It is convenient to have a notation for unordered pairs (of jointly executed)
actions:

EVis := {{a, b} I a, bE Vis} ({a,a} = {a})

The set of all actions is Act := {T} U Vis U EVis. Let moreover Act,,
Act U {iL}. We are now ready to define the syntax of the general abstract
programming language GAP (i.e. the language A in [Tau88]).

The operators (and their intuitive meanings) are:

nil: 'nullary operator (a system which is unable to perform any []
- action; which has stopped to work)

Dtstributloag

KialabiltyCodes

AN,,, CPO- I Avail And/or
'sDit Speoal

rr .k

a: unary operator, used in prefix notation for each a E {r} U
Via (called prefixing- if S is a system aS
is the system that can perform first a and
then behaves as S)

f: unary operator, used in postfix notation for each f E
Fun := {f : Actj. --* Act. I f(L) =
I, f(-r) = r } (called action manipulation)

+: binary operator, used in infix notation (called sum; S + S'
behaves either like S or like S', depend-
ing on whether the first executed action
belongs to S or to S')

f: binary operator, used in infix notation (called general par-
allel composition; S t S' allows S and S'
to work independently but also to perform
joint actions fa, b} E EVis provided that
S, S' can perform a, b respectively.

The notation for recursion is rec r.S, where r E Id, a countably infinite
set of identifiers, and S a system description in which r might occur. (This
is similar to the definition of a parameterless recursive procedure r with
procedure body S together with an immediate call of r.)

As usual we have the notions of free and bound identifiers, we have to
use renaming of bound identifiers, we identify terms which differ only with
respect to bound identifiers, and we will always assume that the Barendregt
convention is obeyed, i.e. that in each collection of terms no identifier occur-
ring bound in one of the terms occurs also free in a term of this collection.

Now the syntax for GAP is given by the grammar:

n I r aS I Sf I S + S S Irecr.S

where r E Id, a E {r} U Vis, f E Fun. Let TermGAp be the set of all
terms defined by this grammar.

1.2 Derived Operators

Many of the operators used in the literature can be defined with the help of
the above; here are some examples. Let S, S' E Term GAP, A _ Via, then:

4

S or S' := rS + rS' is the internal nondeterminism operator of
TCSP (without visible effect the system decides to
behave like S or like S')

S\A S{a " r I a E A) is the hiding operator of TCSP
(Here as in the following we describe a function by
writing down all important argument-value pairs)

S - A S{a I . a E A} is the restriction operator of CCS{ a for a E Vis U {r}

SIS' :- (S S')g, whereag := 7" for a = {b,b} E EVis,
_ otherwise

is the CCS parallel composition.
S IA S' (S f S')gA,

a foraE{}UVis-A
where agA := b for a = {b, b} E EVis, b E A,

.I otherwise
is the TCSP parallel composition.

Milner's pure CCS, the perhaps most influential abstract programming
language, developed from the middle of the 70's on, (see [Mil85] and [BRRP87])
is basically given by the following grammar

S::= nil I aS I IS-A IS+S I SIS I recr.S

where r E Id, a E {r} U Vis,

f E Fun, such that f rEvi= idA Va E Vis : af E VisA f = af.
A C Vis, such that a E A implies a E A. (where g [D denotes the

restriction of the domain of the function g to D)
The classical operator ";" of sequential composition of two systems is not

simply obtained from the prefixing operator, since we have allowed the con-
struction of systems, which may never terminate their activities. We there-
fore introduce a particular symbol V (called tick) which indicates successful
termination. Let Alph = Alph' U {V, V1, V2}, where Alph' 0 {,n ,V 2} = 0.
Then for S, S' E TermGAP

S; S' := (Sg, 17 ,S')-{V,, 7 }, whereg1 = {V'ij- , N71,* 7- }

Anothr very important abstract programming language based on Hoare's
CSP ((Hoa78], see also (BRR87]) is TCSP; a slightly restricted variant can
be defined, using the above, by the following grammar:

5

S::= Ir I Sf S-A IS\A ISorS IS;S S S I recr.S
V::=n I S I V+V

where r E Id, a E Alph, A C Alph, f E Fhn A fr(Ac-Alph)= id A
(Alph)f 9 Alph A Va E Alph: laf-'I E IV.

The main omission is the operator a of external choice, it is replaced by
+ which can be considered as a restricted to operands which both begin by
a visible action (according to the subgrammar with start symbol V). More
on TCSP follows in part 2.

Examples:

(1) rec r.((ar; bni/) + /nil)
An observer watching the system from a start action until a termination
will note a sequence of actions of the form anb"V!, n > 0.{a+l1 ifa ElV

(2) recr.(O(rf) + Vnil), where af a oth can produce

each of the following action sequences:

V, 0V, 01,/, 0121,0123,...

(3) rec r.(rf + 01 nil), where f is as above, produces only the actions i/
(where i E V) with increasing i (beginning with 0) if it is restarted
again and again. For more details see [Tau88].

2 Semantics

2.1 Interleaving Operational Semantics
The traditional approach to the semantics of concurrent distributed systems
is based on the idea of an observer (or user) watching (or interacting with)
the system without any knowledge about its structure. This observer (user)
can only operate sequentially, so he will note (or cause) concurrent actions

6

of the system in some order - thus transforming concurrency into nondeter-
minism.

More formally, we associate to a term of the language (i.e. in our case
GAP) a transition system (sequential automaton) T over Act T = (Z, D, z),
where
Z is the (possibly infinite) set of states,
D C Z x Act x Z is the set of transitions
and z E Z is the start state.

Example (2) from part 1 gives the following transition system: Let S2

denote the given term

012

S2 V S~f V 5ff 'I

0 0 0
nil nilf nilff

The states of the transition system for a term S are terms derived from S
(where S is the start state) by the following inference rules - only the states
reachable from the start state are interesting and need to be constructed in
a concrete example.

(act) TcS, -C, S)

(fun)(S, a, S') A af
(Sf, af,)ff

(sum)(S, a, S')
(S + R, a, S') A (R + S, a, R)

(asy (S, a, S')(s)(S j R, a, S' t R) A (It t S, a, R t S')

(syn) a,bE Via A (S, a, S') A (R b, R)
(S$ R, {a,b},S' t C)

(rec) S recr.RA (R[S/r, a,S')

(Sa,S')

7

where R[S/ir] denotes the term obtained from R by substituting the term S
for every free occurrence of the identifier r together with appropriate renam-
ing of bound identifiers to avoid name clashings.

Example (3) from part 1 gives the transition system

V
0

V nilff ail ff

If we consider such a transition system (for a term S) as an automaton
whose final states are those reached by a tick transition (z, V, z'), then the
formal language accepted by it, is the set of all sequences of observations (or
of actions) one can obtain from terminating runs of an implementation of
the term S.

The semantics obtained is an operational one constructed according to
the structured-operational semantics (SOS) technique introduced by Plotkin;
the semantics of the parallel composition of two terms is the interleaving (or
the shuffle product, if formal languages are considered,) of the semantics (of
the sets of action sequences) of the components.

Two terms have the same meaning with respect to this semantics if the
corresponding transition systems are equivalent - to compare only the sets
of action sequences does not suffice, since it does not say anything about the
nonterminating behaviour. There are several equivalence notions for transi-
tion systems, we consider only the strong bisimulation equivalence (in-
troduced by Milner and Park), since practically all other equivalence notions
are weaker than this.

Let Tj = (Z,Di,z,),i = 1,2 be two transition systems. T1 and T2 are
strongly bisimular (notation: T - T2) if there is B C Z, x Z2 such that

8

* (zi, z2) E B

* V(z, z') E B, a E Act:

(i) (, zo) E D, 34: (z', a,) E D2 A (zo,) E B
(ii) (z', a, z) E A 3zo: (z, a, zo) E D A (zo, zo) E B.

Obviously two terms with bisimular transition systems produce the same
sets of action sequences.
Example: S = a(recr.ar) + b(recq.aq) with r 9 q has the transition
system

recrnar

rec q.aq

According to the Barendregt convention (see part 1) we wanted to identify

rec r.ar and rec q.aq. Therefore S should be identified with

S M- (arec r.ar + brec r.ar)

The transition system for S' is

S & rec r.ar

Both transition systems are strongly bisimular. For further information
on this semantic see Tau8S].

9

2.2 A Denotational Semantics with Simultaneity

We will now refine our semantical view. If the observer (or the user) is a bit
more sophisticated he may detect (or cause) some actions simultaneously. It
is obvious that for the analysis of a concurrent distributed system it is useful
(and sometimes necessary) to be able to describe simultaneity of actions, e.g.
in order to see what effect to execution speed the increase or decrease of a
number of processors would have.

For this purpose we consider a TCSP oriented variant of GAP (called
GAPH), take the (more or less) standard denotational semantics for TCSP
(which however is an interleaving semantics) and equip this with the notion
of step, which comes from Petri net theory.

A step is simply a finite multiset of actions which are performed simulta-
neously - it need not be maximal with respect to the number of simultaneous
actions, since we assume that the components of the distributed system op-
erate asynchronously. Also null steps (which do not contain any action) are
allowed - they can be interpreted as idle steps but have nothing to do with
r-actions (which are not allowed in GAPH).

Since we allow for arbitrary simultaneity and are able to argue about
simultaneity in our semantics it is useful to introduce a new operator (#,)
in the language which allows to restrict simultaneity of certain actions (i.e.
S # 8 has the effect that no step which has an element of B as a substep can
be performed).

The syntax of GAPH is given by the following grammar:

S::= ni esl sI . I S SS I SorS ,SS Irec.S

where r E ld, a E A/ph, f E Fbn, B C M, where M is the set of all multisets
over E := Vi U EVis; 0 denotes the empty multiset.

Apart from #s it is the operator a of external choice (external nonde-
terminism) from TCSP, which offers a choice between two systems that is
resolved by the environment (and which generalizes the + from GAP), that
makes the difference to GAP.

The semantics is defined using the standard denotational technique: We
first define a domain F (in our case a complete partial order) and then de-
fine for each syntactic operator op a corresponding continuous operator opp
on this domain. In order not to have to use environments we restrict our
considerations to closed terms (i.e. terms not containing free identifiers).

10

The elements of the domain are sets F C M" x P(M) of pairs consisting
of a sequence of steps (the system may perform) and of a set of steps (the
system may refuse to perform after having performed the before-mentioned
steps).

Example: S - a nil J11 (a nil a b nil), Vis = {a,b, V}

S may perform the step. [a] (or [a])or may perform the sequence

[a][aJ (or [a][b] or [b][a]) of steps, and after that all steps (other than 0) can
be refused; at the beginning only steps containing at least 2 simultaneous b's
or at least 3 a's or one b and two a's or containing the V can be refused; after
one a or one b is performed in a single step only steps containing at least 2
simultaneous a's, one b or one V can be refused. Therefore the ste,n failure
semantics of S is

{eX I X Ix E M Ix > b Vx_> a Vx > a Vxz>[A/}}u
[b a

{[a]X,[b]XjXC {zEM z>[:]v x > [b]V z > u- [A}U

[a] X,[] X, [a][a]X, [a][bX, [b][a]X I X C M-(6}

For the description of the domain we need the concept of stretching of a
step sequence, i.e. of replacing the step sequence by a step sequence perform-
ing the same individual actions in more (and smaller) steps; i.e. stretching
means partial sequentialization plus insertion of null steps. Thus we can
define the mapping Stretch(w) inductively by:

Stretch(c) :=

Stretch(vz) := Stretch(v){zz 2 ... z. E M* I 2 1 = }.

Definition: F C M" x P(M) is an element of F iff

(1) eE F

(2) vwO E F v E F

I1

(3) WX EFAY C_ X =WY EF

(4) WXEFAWO 0F W(XU{y}) EF

(5) (VY E P(X) - WY E F) * wX E F

(6) v{} E F =* VwX E F

(7) wX E F A v E Stretch(w) =* vX E F

(8) wXEFAzEXAx <y=w(XU{Iy})EF

(9) v6WX E F * vwX E F

(10) (3a E E: w[a]O E F) = w{0} E F

It can be shown (see [TV]) that (F, :) is a cpo with bottom element
.L = M ° x P(M).

Now we can define the operators opF which we denote by the same sym-
bols as in the syntax.

nil := {wX I w E {0}* A X _ M-f{6}}
aF := {vX I vE 6}" A [a] f X C_ M-{)}U

{v[a]wX I V E {O}" A wX E F}
F, orF2 F U F2
F1 F2 :-- {WXIwE{O}AwXEFiFnF2}U

{wX I w E {6}" A 6{O} E F, U F2 A X _ M}U
{wX Iw {w} A wX E FU F 2}

F := {w(XUY) IwE(M-R)°AwX EFAY§_I }U
{wuX I (w{0} E F V 6 E B) A w E (M-D)'A
uX E M" X P(M)),
where B C_ M and 9:= I 3z E B: z _ y}

To define t we need several auxiliary definitions. For each t : Via x Via -
IV we define the following three elements of M (considered as mappings)

(0 if a E EVa
ttVit(a,b) if a E Vis

12

0 if a E EVisr2(t)(a) := j beVist(b,a) if a E Via

0 ifaE Via
Co(t)(a) := t(b, b) if a = {b, b} E EVis

t(b, c) + t(c, b) if a = {b,c}, b 0 c
Let z1 , X2 be steps, then x, z 2 is defined by

x E xi fXz2 iff 3rl,r 2 E M,t : Vis x Vis -4 IV:
x, = i 1 (t) + r1 A X2 = r2 (t) + r 2A
x E r, + r2 + ((t)

Let v = XX 2 ... , . and w = Y1Y2... y. be step sequences of equal length,
then

vtw={zlz2 ... z,, Izi ,4,, i=1 n}
Now for F1,F 2 E F we have

F1 t F2 := { wX I 3w1X E F1,w 2X 2 E F2 : w E w1 t w2A
X C- Ix E M-{O} VXI,X 2 E M:* E xi x

=*zi E X1 V X2 E X2}}U
{wuX I 3w1X E F1,w2X 2 E F2 : w = w1 I w2A

A6 E X, U X2 Au E * A X g M).

Also, to define Sf for f E Fun we need several auxiliary definitions:
For x E M and f E 1un we have:

f undefined if 3a E E : x(a) > 0 A af = i; in all other cases f is the
step (considered as a mapping from E to IV) defined by

(xf)(a) := x (b).
6EAbf=G

This implies in particular Of = 6 for each f E Fun.
Now

f - :={ E M I Yrj-j-,,E- A y" =x}

and for X'C M
-Xf-

1 := U xf -1 .
seX

13

Let W = XI2... Xn be a step sequence, then

f undefined if one w, undefinedIf: wl ... w. otherwise

where 16 if z,i= O z,
:i zf otherwise

Then for F E F we get

Ff := {wf(X U Y) I w(Xf - 1 U r -1) E FA
Y C fy E M I yf undef.}}U

{(wf)uX I uX E M* x P(M)A
(w{0} E F V Vn E I : 3v E (rf-')" : wvO E F)}

where for A C_ Act we write := {[a] I a 9 T}.

The proofs that all these operators are continuous can be found partly
in [TV] - to prove that action manipulation (application of f E Fun) is
continuous, one cannot simply generalize the technique used in [TV] for the
proof of the continuity of the hiding operator but has to go back to [Bro83].

The step failures semantics can be weakened to get new semantics by
restricting the notion of steps and of refiumls:

- if only null or singleton steps may be refused we get the simple step
failures semantics

- if steps are restricted to be singletons only this gives the standard
(linear) failures semantics.

Based on these notions of semantics we have different notions of equiva-
lence.

Example:
S aN/nii11(,q nil
T - b,/l 0 banIaW

Then S and T have the same linear failures semantics but different (sim-
ple) step failures semantics and moreover
S, S 0 T and S or T have the same simple step failures semantics but
in the step failures semantics S and S 0 T have the same semantics while
S 0 T and S or T have different semantics.

14

3 Petri Nets

3.1 Basic Ideas

Firstly we will consider (distributed concurrent) systems with the goal to
develop a formalism that describes the structure as well as the dynamic
behaviour of such systems. Using this formalism one can then specify new
systems (which are to be built) also.

The basic assumptions from which we start are:

- Systems are composed of subsystems, which can communicate with
each other (and with the environment) by sending and receiving mes-
sages (or other objects).

- The subsystems can be relatively independent of each other (e.g. they
can be distributed widely).

- The behaviour of a system is determined by processes which are running
in subsystems and which consist of changes of the states of subsystems
by actions (of communication or transport).

The formal model is developed according to the following principles.

(1) States and actions (of state change) are both explicitely represented.

(2) States (reap. actions) of the subsystems are not combined together to
form global states (reap. actions) of the whole system; they are repre-
sented separately.
Consequence: We better represent these systems by (at least) two-
dimensional graphics.

(3) The transport of an object (or a message) in the system can be consid-
ered as a state change. State changes can also be considered as actions
of transport of objects (i.e. messages).
Consequences: For our formal description we need exactly 2 types of
components and a notation for the objects and their position:

- active components (from a set T of so-called transitions, graphi-
cally represented by 0) for the representation of actions

15

- passive components (from a set S of so-called places graphically
represented by Q) for the representation of (local) states (of sub-
systems).

- As objects we consider (in the simplest version we want to discuss
here) only simple tokens (graphically represented by a dot e) which
are available in a place or not (0 or 0).

(4) The amount of state change caused by one action is constant (i.e. al-
ways the same if the action occurs - independent of other circum-
stances)

Consequence: Each action component is connected to a fixed number of
passive (state) components, which are subject to change by this action.
Thus the system can be represented as a bipartite graph with node set
S U T, where no two nodes of the same type are connected. Since state
change is represented by taking away or adding tokens the graph will
be directed (according to the direction of the flow of objects).

Example: Traffic light

red

2

yellow

green

(5) AL action can take place (is enabled) if the state changes to be produced
by it are possible; but the action need not take place if it is enabled
such that by other actions it may be disabled again.

16

3.2 Formal Definitions

There are several ways to formally describe the class of Petri nets described
above. The usual definition is the graph theoretic one, treating places and
transitions equally:

(1) A place/transition net (P/T net) is a triple N = (S, T, F), where S
and T are the disjoint sets (of places and transitions) and F:
S x T U T x S -- IV (the flow relation).

Often one considers labelled P/T-nets, where different transitions may be
equally labelled; i.e. one adds a labelling function I from T to a set of labels.
If one wants to focus attention on the transitions (labelled by actions from a
set Act of actions) then the following is more convenient. Let M(S) be the
set of multisets over S.

(2) A P/T-net over Act is a pair (S, D) where S is the set of places, D C
M(S) x Act x M(S) is the set of labelled transitions (together with
the weighted arrows connecting the related places) (For this notation
se [Gol88]).

For more algebraic considerations a third definition seems to be promising
(see [DMM89]).

(3) Let SO be the free commutative monoid on S (if S is finite, the elements
of S. are the multisets over S), then an mP/T-net is a quadruple N =
(S0, T, a, 0), where T is the set of transitions and and a, 0 : T - SS

are mappings associating to every transition its pre-multiset and its
post-multiset (places with the weighted arrows connecting them to the
transition).

In the following we only consider P/T-nets where all weights of arrows
are 1, i.e. where (in def. (1)) F maps into (0, 1), i.e. where instead of M(S)
we can use P(S) in definition (2) - moreover we will use definition (2). And
we briefly call these particular P/T-nets only nets.

A marking of a net is a mapping M :S -* IV. A transition (Sha,S2)
is enableA at a marking M, if Sz :< M.

A transition d, enabled-at a marking M may occur; if it occurs it pro-
duces the marking M2 :- (Mi -S)+S2; this is usually denoted by Md[d)M 2 .

17

This notation is extended to arbitrary words over D by MI[e)MI and
M1 [ud)M iff 3M2 : M[u)M2 A M2[d)Ms. Moreover we write [M) for the set
of all markings reachable from M.

A net (S, D) with a marking M, called a marked net, is denoted as triple
(S,D;M).

3.3 Syntax-Driven Construction of Nets from GAP

Terms

If we consider GAP as a specification language for concurrent systems and
nets as formal descriptions of concurrent systems, it is natural to ask whether
GAP terms can be represented as nets. Obviously the actions of GAP have
to be represented by transitions, all the actions which may be performed
before any other action have to be enabled by an appropriate marking; to
the operators on terms should correspond operators on nets; i.e. we look for
a syntax-driven modular net construction. Moreover we aim at "minimal"
markings, i.e. mappings S -4 {0, 1}, which we represent as subsets of S. In
a first step we do not consider recursion. We again denote the operators in
the same way as in GAP.

nil (1),0; Is)

Let N = (S, D; Z) be a marked net, then

aN (S U {s}, D U {({s}, a, Z)}; {.})
for a E Vis U {r}.

Nf Reach(S, D'; Z), i.e.
the subnet reachable frnr the initially enabled transi-
tions of the net (S, Y; Z), where D' = {(MI, af, M2) I
(MI, a, M 2) E D A af 9 J-}

To define the operator + we introduce a restriction on the syntax. we
allow only nets with a single marked place as operands (corresponding to
GAP terms o the form aP) - otherwise problems would arise.

Let N = (Si,D;{z}), i = 1,2 be marked nets with S, inS 2 = 0, then:

18

N,+N := Rea(Sj USU{ z},Di UD2UD+;{z}),
where z 0 S, U S2 and

4 D+ = {({z},a,M) I ({zl},a,M) E D , V ({z3},a, M) E D2}

Let N = (SiD,; Z1), i = 1,2 be arbitrary marked nets with S1fnS 2 = 0, then:

Ni# tN 2 := (SIUS 2 ,D 1 UD 2 UD+;ZUZ2), where
D+ = {(MI 0 M2 , {a,, a}. MU U M2) I

Vi E {1,2} : a, E Vie A (M,, a, M:) E D,}

Example: Let P :=anil+bnll, Q:m=cni
Then P t Q is represented by the net

ta

#b

C

The main problem is the modelling of recursion. Therefore we make
another syntactical restriction: We consider only recursion terms of the form
recp.,Q. It can however be shown (see [Tau88]), that semantically this is not
restrictive. An important goal of the construction is to obtain finite nets in
as many cases as possible. The grammar for the terms to which we associate
Petri nets now is as follows

S ::= nIIpIaQIS+Slrecp.rQ
Q ::=CS(QIqt Q.

19

The key idea for modelling recursion is based on Milner's construction of
a finite extended transition for a CCS term (for details see [Tau88]); i.e. we
enlarge the notion of a net by a means for representing identifiers and action
manipulation functions: An extended net is a quadruple N = (S, D, E; Z)
where (S, D; Z) is a net and

E C P(S) x Idf x FAn. (the set of extensions)

(A1n±. is the set of action manipulation functions Fun, enlarged by the
special element 1, 1 0 Fan)

An extension can be considered (and depicted) as a special transition
with no post-set.

For p E Idf we then get the net representation

p := ({z}, 0, {({z},p, id)}; {z})

All the other net constructions above must now be enlarged by appropri-
ate extension sets E'

ail: E' := 0
Nf: E' := {(M,p,f) I(M,p,g)EEAg#.l_}U

{ (M,P,1) 1 (M,p,1) E E}
N, + N2 : E' := E, U E2 U E+ where

E+ :={({z},p,f) I ({zi},p,f) E El V({z 2},p,f) E E2 }.
N, 4 N2 : E' := {(Mi U M2 ,p,f) I (Mi,p,g) E El A M2 E [Z2) 2

A(f = g V f = I A 3(U, a, [) E D2 U E2 : U 9 M)V
(M2, p,g) E E2 A M E [Z1)i

(f =gVf = .LA3(Ua,U) E D, UEj : U M)}

To define the recursion operator for extended nets we need some more
notations:

For r E Idf and N = (S, D, E; Z) where
I f E(r) := {f E FAn1 I(M, r, f) E E} define
F:= id-f. .f. In >_ O,f,...,f. E E(r)}, and

for f E F let (Sj, Df, Ef; Zf) := Nf such that f # g implies S 1 nS, = .
Then

recr.rN := Reacd(({z}UUfeFS,, {({z}, r,Z)}UD+UUIF Df,
UeFEI-(P(UICFSI) x {r} x Fun); {z}))

20

where z f S1 for all f E F and

D+ = {(M,r,Z,) I (M,r,) E U E,}
fiEF

Example: recp.ra(nil t bp) gives the net

4 Semantics of Petri Nets

The simplest operational semantics of a marked net (S, D; M) is the subset
of all words w E D" which denote sequences of occurrences of transitions
starting from the marking M; one can refine this notion by considering an
additional marking (or a set of markings) and take only those words in D"
which lead from M to this (these) marking(s). Thus a Petri net can be seen
as a device to produce formal languages - and, indeed, there is a large body
of interesting results on the formal languages of Petri nets; for details see the
paper by M. Jantzen in [BRR87.

As Petri nets are meant to model not only relational systems (which
accept input, produce output and stop) but also reactive systers (which
are running all the time and react to interactions by users), it is useful to
study also the infinite behaviour of nets - the simplest way to do it, is to
study infinite sequences of transition occurrence possible in a net (see the
papers by Carstensen in ICJK88] and by Valk in [BRR87]).

Since Petri nets should describe concurrent systems, it is also sensible to
look after semantics that model concurrency more explicitely. Obviously the
notion of steps (see part 2)can be used. A step of a net (S, D) is a multiset

21

over D. The step i is enabled at a marking M if for each s E S

x(d). prs(d)(s) :5 M(s)

dED

where pri(d) = 61 if d = (1,a, 62) E M(S) x Act x M(S).
Now we can define finite (and infinite) step occurrence sequences in anal-

ogy to transition occurrence sequences.
Obviously we can also transfer the notion of a failures set to Petri nets

(see e.g. the paper by Vogler in [CJK88]).
But Petri nets offer other interesting formalisms for describing the con-

current processes going on in a distributed system: One can represent these
processes again as nets.

One possibility is to unfold a net (like one can unfold a while-loop into a
sequence or a transition system into a tree).

Example: (from the paper by Winskel in [BRRS7)

0 unfold

a
0 3

C

3 3

b

If one is only interested in the actions (the transitions) and the dependen-
cies between the events of transition occurrences then one can erase the places
in the unfolded net; one then obtain a so-called event structure - for more
details on this very powerful semantical structure for describing concurrent
processes see the paper by Winkel in [BRR87].

22

Instead of representing all possible processes in one unfolded net, one
can separate them: beginning with an initial marking only that part of the
unfolding is kept where the tokens flow through during a process. Then one
marked net will be represented by a possibly infinite set of possibly infinite
nets in which each place is in the preset of at most one transition only. For
more details on the theory of these nonsequential processes see the paper
by Fernandez in [BRR87 and the book [BF88].

If one suppresses the places in the nonsequential process, then one gets
partial orders labelled with (the names of) transitions - these labelled partial
orders can be considered as generalizations of words over the set of labels
(words being linear labelled partial orders); therefore they are often called
partial words. From the language of partial words defined by a Petri net one
can easily obtain the language of transition sequences as well as the language

of step sequences. For more details see [Kie88] and the paper by Kiehn in
[Roz88].

There is one other quite interesting idea to give a non-interleaving (i.e.
concurrency and nondeterminism distinguishing) semantics for (non-labelled)
Petri nets. Let us imagine an observer (as in 2.1). We now ask: what minimal
global, structural information on the net we need in order to infer from one
observation sequence all other sequences possible by starting at the same
marking. The answer (given by Marzurkiewicz), see his paper in [BRRS7])
is: We only need to know which pairs of transitions are (always) independent
such that they can be permuted in each transition sequence.

The original definition of independency of transitions has be generalized
by Diekert (see [Die89]); it can however be further generalized as follows:
Transitions t, t' are dependent iff t = t' or prs(i') n pr (t) # 0 or pri (e) n
pr3 (t) # 0. It is however not clear, what properties this generalized theory
will have, since the extension of Marzurkiewicz's idea from the class of marked
nets where each place can hold at most one token to general marked PIT-
nets has some inherent difficulties lying in the fact that in the general case
the permutability of transition occurrences in an observed sequence depends
on the marking and not only on the structure of the net.

23

Example:

N

S6

The main advantage of this approach is the following: The independency
relation I on the set T of transitions can be used to define the free partially
commutative monoid T*/I of so-called traces (i.e. congruence classes of
words with respect to permutation of independent transitions); the semantics
of a net then becomes a subset of such a monoid; these monoids cap be studied
by algebraic techniques (see [Die89]).

5 Modular Construction and Refinement of
Concurrent Systems

Abstract programming languages are based on the idea of modular construc-
tion; their semantics are always compositional.

Petri nets per se have no modular structure; only rather recently - based
on the ideas from the field of abstract programming languages - modular
construction techniques based on operators on nets have been studied (see
[Tau88], [GoI88]). Also, it has been observed by Mazurkiewicz (see his paper
in [Roz88]) that each unlabelled P/T-net (with arrow weights 1) can be
considered as composed of so-called atomic nets (whose sets of places contain
only one element) by an operation of synchronization (i.e. composition of nets
by building the disjoint union of their places but perhaps identifying some
of their transitions), yielding a compositional semantics for nets based on
partial orders.

Another way to build complex structures is to use refinement techniques.
Abstract programming languages pose problems with respect to refinement;
e.g. bisimulation is not a congruence with respect to refinement.

24

Example: (see [GG89]): The two terms P :_ anil 11 bnzl and Q
ab nil + ba nil are bisimulation equivalent but if the action a is refined into
the sequential composition of two actions a,, a2 then we obtain two systems
which are not bisimular:

P' :=- (aia 2 nil) 11, bnil, Q' := aa2bnil + baa 2 nil

Only recently the problem of refinement for abstract programming languages
is being studied (see [GG89]).

For Petri nets refinement has been considered from the beginning on (see
[Vog89]) - there are even several methods of refinement: One can refine single
transitions or single places or one may cut off a part of a net (such that
the boundary along the cut consists only of transitions or only of places)
and substitute a new net into the remaining net. There are two different
approaches to study this: Usually refinement is studied under the aspect of
preserving the behaviour of the original net; however, recently (influenced by
the abstract programming languages) also the situation is studied where the
behaviour is changed by the refinement, such that the same refinements in
two behaviourally equivalent nets result in behaviourally equivalent refined
nets.

A completely different approach to refinement has been developed by
A. Kiehn (see [Kie89]): Instead of replacing a transition by a net, an incar-
nation of the refini-g net is called (like a subroutine). This naturally also
allows for recursion. Using this technique a concurrent system is specified by
a set of nets which may call each other recursively. For the implementation
of such specifications one obviously need some sort of stack mechanism.

Acknowledgement: I would like to thank R. Gold and D. Taubner for
many helpful suggestions; in particular D. Taubner also extended the step
failure semantics to the language GAPH. Special thanks go to H. Hadwiger
and D. Stein for their excellent and phantastically quick typing of this text.

25

References
[BF88] E. Best and C. Fernandez. Nonsequential Processes. Number 13 in

EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.

(Bra84] W. Brauer. How to play the token game. Petri Net Newsletter,
16:3-13, 1984.

[Bra871 W. Brauer. Carl Adam Petri and informatics. In G. Rozenberg
K. Voss, H. Genrich, editor, Concurrency and Nets, pages 13-21.
Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1987.

[Bro83] S. D. Brookes. A Modelfor Communicating Sequential Processes.
Ph D thesis, Carnegie-Mellon Univ., 1983. Rpt. CMU-CS-83-149.

[BRR87] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets,
Advances in Petri Nets 1986, Parts I and II, LNCS 254 and 255.
Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1987.

[CJK88] M. P. Chytil, L. Janiga, and V. Koubek, editors. Mathemati-
cal Foundations of Computer Science 1988, number 324 in Proc.
MFCS, LNCS. Springer-Verlag Berlin, Heidelberg, New York,
Tokyo, 1988.

[Die89] V. Diekert. Combinatorics on traces with applications to Petri
nets and replacement systems. Habilitationsschrift, TU Miinchen,
1989. to be published in the LNCS.

[DMM89 P. Degano, J. Mesegner, and U. Montanai. Axiomatizing net
computations and processes. In Proc. 4th Ann. Symp. on Logic in
Computer Science (LICS), Asilomar, Ca., USA, June 5-8 1989.

[GG89] R. van Glabbeck and U. Goltz. Partial order semantics for re-
finement of actions - neither necessary nor always sufficient but
appropriate when used with care. In EATCS Bull. No. 38, pages
154-163, June 1989.

26

[Go188] U. Goltz. Uber die Darstellung von CCS-Programmen durch
Petrinetze. GMD-Bericht, Nr. 172, Oldenburg-Verlag, Miinchen,
Wien 1988. see also [CJK88], pages 339-350.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Comm.
ACM, 21:666-677, 1978.

[Kie88] A. Kiehn. On the interelation between synchronized and nonsyn-
chronized behaviour of Petri nets. EIK, 24:3-18, 1988.

(Kie89] A. Kiehn. A structuring mechanism for Petri nets. Report TUM-1
8902, TU Mimchen, 1989.

[Mi185] R. Milner. Lectures on a calculus of communicating systems. In
S. D. Brookes et. &L, editor, Seminar on Concurrency, number

197 in LNCS, pages 197-220. Springer-Verlag Berlin, Heidelberg,
New York, Tokyo, 1985.

[Roz88] G. Rozenberg, editor. Advances in Petri Nets 1988. Number 340
in LNCS. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo,
1988.

[Tau88] D. Taubner. The Finite Representation of Abstract Programs by
Automata and Petri Nets. Dissertation, Tech. Univ. Munich, Re-
port TUM-I 8817, Dec 1988. to appear in revised form in the
LNCS.

[Tra88] B. A. Trakhtenbrot. Comparing the church and the turing ap-
proaches: Two prophetical messages. In R. Herken, editor, The
Universal TAring Machine, A Half-Century Survey, pages 603-
630. Kammerer & Unverzagt Hamburg, Berlin and Oxford Uni-
versity Press, 1988.

[TVJ D. Taubner and W. Vogler. Step failure semantics and a complete
proof system. to appear in Acta Informatica - preliminary versions
appeared as report TUM-[8614, Tech. Univ. Munich, Sept 1986
and in LNCS 247 (Proceedings STACS 87), pp. 348-359.

[Vog89] W. Vogler. Failures semantics of Petri nets and the refinement of
places and tranlitions, manuscript, submitted to TCS, 1989.

27

